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.FOREWORD 

How many units should he put in each package? This question 

has plagued the supplier of all items that lend themselves to multi- 

unit packaging. Sometimes the question may he resolved in terms of 

the size and the shape of the resulting package, at other times in 

terms of decreasing the waste that may result if excess items go 

unused, and also in terms of reducing the necessity of frwnflUng indi¬ 

vidual units. The QM Board took the last point of view in the course 
of a study seeking the improvement of the packaging of supplies for 

comhat support. More specifically, the Board defined an optimum 

package size of a supply item that will minimize handling effort in 

supplying one item to each of a number of consumers grouped into 

various units of known sizes. The result appeared to require exten¬ 

sive comw'tations which might have limited its usefulness to situa- 

tiono in which high-speed computers are ava^l^-le. The Board, 

therefore, requested the Operational Mathematics Office (an element 

of the Cameron Station QM Activities reporting to the Director of 

Operations, Office of The Quartermaster General), to study the prob¬ 

lem. The 0M0 developed the abbreviated computational procedures 
described in this report. 

This is the fourth of a series of reports on the application of 

mathematics to QM problems. With this report the QM Board becomes 

the third major QM element to be assisted through reports in this 

series. Reports were previously prepared for other Divisions in the 
OQMG and for the QM Research & Engineering Center Laboratories. 

C. G. CALLOWAY 
Major General, USA 

Director of Operations 
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ABSTRACT 

A "modular number" has been defined as an optimum package size 

for a supply item that vill minimize handling effort in supplying 

one item to each a number of consumers grouped into various'units of 

known sizes. The QM Board has suggested two different criteria for 

expressing numerically what is meant by "minimizing handling effort " 

If high-speed computing facilities are available, the deteimination’ 

of „the modular number under either criterion could be carried out by 

a orute force technique. However, if the computations must be made 

manually (perhaps with the aid of a desk calculator), short-cuts are 

desirable. Two types of step-by-step procedures oriented toward 

manual computation are developed in this report. Either procedure 
can be adapted to either of the criteria proposed by the QM Board. 
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INTRODUCTION 

In connection with Its Project No. 231 the Quarterms.ster Board 
requested the Operational Mathematics Office to develop a computational 
procedure for determining modular numbers. A modular number may be 

described as an optimum package size for a supply item that will mini¬ 

mize handling effort in supplying one item to each of a number of 

consumers grouped into units of various (known) sizes. The "consumers" 

referred to may be of various types, e.g., actual troops, or pieces of 

equipment which "consume" repair parts. Multiplying the modular number 

by an appropriate replacement factor gives the modular quantity, which 
is that quantity of an item of supply that can be bound together or 

contained as a unitized element for the purpose of reducing to a mini¬ 

mum the number of supply handlings." For a fuller discussion of these 

concepts the previously cited report of the QM Board may be consulted. 

In order to formulate the problem mathematically, consider an 

array of numbers or "frequency array" such as is exhibited In Table 1. 
Each number in the second column may be thought of as the size of one 

of the consuming units involved, while the corresponding number in the 

first column is the number of units of the indicated size which are to 
be supplied. 

In order to reduce the problem to purely mathematical terms some 

numerical criterion of "optimization" must be agreed on. Two such 
criteria have been suggested by the QM Board: 

I. When every number in the array is divided by the modular 
number (each number in the second column being regarded as present in 

the array the number of times indicated in the first column) the sum 

of the remainders obtained is less than a previously assigned tolerance 

T. The optimum modular number is the largest divisor which satisfies 
this requirement. 

II. Under the same assumptions as for Criterion I, the optimum 
modular number is that divisor for which the sum of all the quotients 
and remainders is a minimum. 

Only Criterion I was mentioned when the assistance of the 
Operational Mathematics Office (OMO) was requested in January i960. 

The numerical technique referred to in this report as the "second method" 

Supply Segmentation and Unitization for Combat Support (Draft 
Quartermaster Board, U. S. Army, Fort Lee, Virginia, November i960. 
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was then developed and furnished informally to the QM Board. Criterion 
II was not discussed with the 0M0, but was included in the Board's 

published report. Subsequently, the 0M0 developed the "first method" 

(placed first in this report because it would probably be preferred in 

the majority oí cases). It was felt that a full report covering both 

criteria and Doth procedures woul be more useful than one limited to 
the information supplied to the QM Board. 

In approaching the problem certain general observations concerning 
the behavior of (a) the sum of the quotients and (b) the sum of the 

remainders will oe helpful. If the divisor is taken larger than any of 

the numbers in the second column of the frequency array, the quotients 

are all zero, while the sum of the remainders is the accumulated total. 

On the other hand, if the divisor is taken as 1, the remainders are all 

zero and the sum of the quotients is the accumulated total of the array. 

In other words, as the divisor decreases from a large number to 1, the 

sum of the quotients increases from zero to the accumulated total, while 

the sum of the remainders decreases from the accumulated total to zero. 

The rtc sums also differ with regard to the effect of small changes 
lr the divisor• It i^ easily seen that if the divisor is reduced in 

size the sum of the quotients can never decrease. If the divisor is re¬ 

duced only a little the sum of the quotients may remain unchanged, but 

if the divisor is decreased sufficiently it will surely increase. Using 

mathematical tenninology, the sum of the quotients is a monotonie func¬ 
tion of the divisor. 

The sum of the remainders behaves differently. Though its general 

tendency is downward as the divisor decseases, it fluctuates, and. in a 

particular instance, may move either up or down. For example, in the 

array of Table 1, ii the divisor is tak' "i as 137> 25 of the h-2 remainders 
at once became zero. It might be suspected that a slightly smaller 

divisor would produce a larger sum of remainders. In fact, the sum of 

remainders is 1032 for a divisor of I37 and IO69 for a divisor of I36. 
The divisor must be reduced to 68 in orde^ to obtain a smaller sum of 
remainders than for 1JJ. 

Under either of the two criteria previously stated, the divisor 

sought will be some number between 1 and S, the accumulated total of the 

array, if high-speed computing facilities were available, one could com¬ 

pute Q, or Q + R, as the case may be, for every integral divisor between 

1 and S and then select the one which meets the stated conditions. In 
that situation th.s might, in fact, be the simplest procedure. 



TABLE 1 

GIVEN FREQUENCY ARRAY 

Frequency Number 

1 185 

1 231 

5 IO6 

5 183 

25 137 

5 163 

Accumulated total 61OI 
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However, in the absence of such facilitj.es, this would represent 

a formidable computational task, and it is the purpose of this report 

to develop procedures suitable for manual calculation, lo this end, 
means will be devised to reduce the amount of arithmetic required. As 

already indicated, two general types of methods will be described. The 

first of these emphasizes a systematic and orderly procedure for making 

the calculations, and probably would require fewer computational steps 

in the majority of cases. The second method seeks to "skip" as many 

divisors as possible (showing by various lines of reasoning that they 

do not need to be tested), and might be advantageous in situations where 

the number of trial divisors would otherwise be quite large. 

If Criterion I is adopted it is possible to fix a lower limit to 

the divisors that need to be tested before commencing the detailed compu¬ 

tations. If any number in the array is divided by a divisor D, the 

largest possible remainder that can be obtained is evidently D - 1. Thus 

if F denotes the total number of numbers in the set (the sum of the fre¬ 

quencies in Table l), the sum of remainders R cannot exceed (D - 1)F. 

If we determine the largest divisor D such that 

(D - 1)F < T, 

or, in other words, such that 

T 
D < 1 + ^ , 

the optimum modular number under Criterion I cannot be less than this 

divisor, and this is the smallest divisor that needs to be tested. An¬ 

other way of saying this is that the minimum divisor is the smallest 

ihiteger that equals or exceeds T/F. 

In applying Criterion I to the illustrative data in Table 1, we 

shall consider two cases: (i) T = 6l0 (10$ of the accumulated total S) 

and (ii) T = 2MiO (40# of S). We have F = ^2, and therefore the minimum 

divisor is 15 (the next integer above 610/42) in case (i) and 59 (the 
next integer above 2U40/42) in case (ii). 

Under Criterion II there does not appear to be any simple means of 

fixing a useful m-lrrimum divisor until after some values of Q + R have 

been computed. 
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FIRST METHOD 

If deaiotes one of the numbers in the array and and ri are 

the quotient and remainder obtained when is divided by a trial 

divisor D, we have the relation 

N-i = q1 D + ^ 

Summing over all the numbers in the array (including repetitions) 

gives 

S = QD + R, 

from which we can easily derive the relations 

R = S - QD 

y + R = S - Q(D - 1). 

It is clear then that it is not necessary to make separate compu¬ 

tations of Q and R. In general, Q is easier to calculate, and either 

R or Q + R is then easily obtainable. 

Table 2 is designed to facilitate the computation of Q for different 

trial divisors in a systematic and orderly manner. It should be noted 

that a number of different trial divisors may yield the same Q. For ex¬ 

ample, with the illustrative data given in Table 1, Q has the same value 

(37) for all trial divisors between ll6 and 137, inclusive (as seen in 
Table 3). As one goes down the scale of trial divisors, Table 2 mahes 

it easy to see at what points the value of Q changes and by how much. 

The "Quotient" column contains successive numbers starting with 1. 

The various numbers of the array (in descending order of magnitude) are 

listed at the head of the columns as "dividends." Under each dividend 

and on the line with each quotient is entered the whole number of times 

that quotient divides into that dividend. 
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TABLE 2 

DETERMINATION OF THIAL DIVISORS FOR WHICH THE VALUE OF Q CHANGES 

Quotient 

1 

2 

3 

4 

Dividend 

.H M M 
231 185 183 

115 92 91 

77 61 61 

57 M k5 

153 Ï2Ï IÕ5 

163 137 106 

8.1 68 53 

45 35 

kc 34 26 

5 

6 

7 
8 

46 37 36 

38 30 30 

33 26 26 

28 23 22 

32 27 21 

27 22 17 

23 19 15 

20 17 13 

9 

10 

11 

12 

25 20 20 

23 18 18 

21 l6 16 

19 15 15 

18 15 11 

16 13 10 

l4 12 9 

13 11 8 

13 

14 

15 

16 

17 

17 l4 l4 

16 13 13 

15 12 12 

14 n 11 

13 10 10 

12 10 8 

11 9 7 

10 9 7 

10 8 6 

9 8 6 

Frequency 11 5 5 25 5 
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TABLE 3 

GALCUIATION OF Q 

D A4 _S5_ 

231 1 1 231 
185 1 2 370 
183 5 7 1281 
163 5 12 1956 
137 25 37 5069 
115 1 38 4370 
106 5 ^3 ^558 

92 1 ^ kob6 
91 5 ^59 
81 5 ^37^ 
77 1 55 ^235 
68 25 80 
61 6 86 52½ 
57 1 87 ^959 

54 5 92 I968 
53 5 97 51^1 
46 2 99 ^554 
45 30 129 5805 
ho 5 134 5360 
38 1 135 513O 
37 136 5032 

36 5 l4l 5076 
35 5 146 5.MO 
34 25 171 5814 
33 1 172 5676 
32 5 177 5664 
30 6 183 5490 
28 1 184 5152 

27 30 2l4 5778 
26 n 225 5850 
25 1 226 5650 
23 7 233 5359 
22 30 263 5786 
21 6 269 5649 
20 11 280 5600 

19 26 306 5814 
18 11 317 5706 
17 31 348 5916 
16 12 360 5760 
15 37 397 5955 
14 12 409 5726 
13 42 451 

4 + R 

5871 
5733 
4827 
4157 
1069 

741 

425 

458 

476 

533 

543 
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Under Criterion I the table can be terminated when a line is about 

to be reached in which all the entries will be less than the mini¬ 

mum divisor obtained as described earlier (15 in the illustrative ex¬ 

ample). Under Criterion II one cannot be sure when to terminate the 
table until some of the figures in Table 3 have been calculated. For 

convenience the frequencies in the array of the various "dividends'' 

are shown at the foot of the corresponding columns. 

Table 3 is fon the purpose of computing the values of Q and then 

determining the optimum modular number. The numbers "D" in the first 

column are the entries from the interior of Table 2, listed in de¬ 
creasing numerical sequence. These are the divisors for which the 

value of Q changes: in other words, the value of Q for each of these 

divisors is different from that which would be obtained if the divisor 
were increased by 1. 

If one of these numbers appears more than once in Table 2, it 

should be listed only once, but careful note should be taken of all 
occurrences of the number. 

Opposite oetch D in Table 3 is entered in the second column (A Q) 

the frequency at the foot of the column of Table 2 in which D appears 

(or the sum of the frequencies if it appears in more than one column). 

These figures represent the increment in the value of Q, so that the 

Q column is obtained by merely accumulating the A Q column. 

If Criterion I is adopted, the final column of Table 3 can be 

omitted and the table can be terminated earlier. Since R = S - QD, 

having R less than T (as required by Criterion l) is tantamount to 

having QD greater than S - T. Thus if QD is camputed for each divisor 

before going on to the next divisor, the calculation can be stopped as 

soon as a value of QD larger than S - T is obtained. 

In the numerical illustration two cases were considered: viz., 

T = 610 and T = 2UtO. Since S = 6101 (from Table l), the corresponding 

values of S - T are 5^91 seid 3661, respectively. In the latter case, 

this value is first exceeded for the divisor 137> which is therefore 
the optimum modular number, and the table can be terminated at that 

point. In the former case, the optimum divisor is 45- 

Under Criterion II the optimum divisor is the one which yields 

the minimum value of Q + R. Accordingly, certain values of this quantity 

are shown in the final column. These are computed by the formula 

8 



Q + R = S - QD + Q. 

The values of Q + R are required only in those instances in vhich the 

value of QD is the largest obteined up to that point. This is because 

Q always increases with each new divisor, and therefore Q + R cannot 
be less for a given divisor than for a preceding one unless QD is 
larger. 

The table can be terminated when a value of Q is obtained that 

is greater than the minimum Q + R. In the numerical example this 

occurs for D = I3,. which yields Q = iv51 (as compared with the minimum 
Q + R of 425). Since the minimum. Q + R was obtained for the divisor 

this is the optimum modular number under Criterion II. 

SECOND METHOD 

Under the second method individual quotients cr.l remainders are 

computed for each number in the array for each divisor to be tested. 

Thus more computational steps are required to test a given trial 

divisor. On the other hand additional criteria Eire developed which 

make it possible to reduce substantially the number of divisors that 

need to be tested. Therefore this method may be advantageous in some 

situations. The procedures followed under Criterion I and Criterion 

II are sufficiently different to make it desirable to treat them 
separately. 

1. Preliminary Analysis under Criterion I. 

The first step in the procedure is the preparation of a table which 

summarizes the given data and serves the function of fixing certain 

limits between which the maximum modular number is known to fall. Table 
4 is an illustration of such a table. 

The first two columns of Table 4 contain the same information as 

Table 1, but with this difference — that the numbers in the second column 
are now arranged in Increasing order of magnitude. 

The third column shows the total number of items in the array larger 
chan the corresponding number in the second column, and is obtained by 

accumulating the numbers in the first column from the bottom up. 

9 



TABLE h 

FRELIHIMHY AMLYSIS FOR FINDING MAXIMUM 
MODUIAR NUMBER, CRITERION I 

Frequency 

5 

25 

5 

5 

1 

1 

Number 

106 

137 

163 

183 

185 

231 

Accumulated 
Frequency 

37 

12 

7 

2 

1 

Mln~t Tmim R 

0 

530 

3955 

).i 'T*™ 
• I i - 

5685 

5870 

Maximum R 

3885 

2162 

5089 

513^ 

5869 

5870 

10 



It Is the purpose of the fourth and fifth columns of fable 4 to fix 

some rough limits on the values that R can have. Clearly, if D is divided 

into a number less than D, the remainder is the number itself. Thus the 

contribution to R of all the numbers in the array less than D is merely 

the accumulated total of all such numbers (taking into account the fre¬ 

quency of each, as indicated in the first column).. If D itself happens 

to be a number of the array, its contribution to R is of course zero. 

With regard to the numbers in the array greater than D, the most 

favorable situation would be that in which all such numbers are exactly 

divisible by D, and their contribution to R is zero. Thus, if one of 

the numbers in the second column is taken as D, a lower limit to R is 

the accumulated sunn of the numbers less than D, and this accordingly is 

shown in the fourth column. Thus, the fourth column is obtained by ac¬ 

cumulating the products of the first two columns, starting with zero in 

the first line and entering each cumulative total on the line below that 

corresponding to the last product included. 

The most unfavorable situation is that in which each number in the 

array greater than u falls short by just one of being exactly divisible 

by D, so thus the remainder is D - 1. Thus, if one nf the numbers in 

the second column is taken as D, an upper limit to R would be obtained 

by adding to the lower limit the product of D - 1 by the number of num¬ 

bers in the array greater than D (shown in the third column). This 

upper limit is shown in the fifth column. For example, if we take 

D = 137, the result is 12 (137 - l) + 530 = 21Ö2. 

By inspection of the figures in the fourth and fifth columns, we 

can now fix some limits on the maximum modular number M. Evidently, 

there is no maximum modular number (and the problem makes no sense) if 

T (the preassigned tolerance for the sum of the remainder) is greater 
than the accumulated total of all. the numbers in the array. It will be 

assumed hereafter that T is less than this accumulated total.¿ 

If one of the numbers in the fifth column is less than T, clearly 

the corresponding number in the second column is a modular number, and 
the maximum modular number is at least equal to this quantity. Thus, 

a lower Hm-lt to M is the largest number in the second column correspond¬ 

ing to a number less than T in the fifth column. 

^If T is equal to the accumulated total, it is not difficult to see 

that the largest number in the array is the maximum modular number. 

11 



On the other hand, if any number in the fourth column is equal to 

or greater than T, then M must be less than the corresponding number 
in the second column. Thus, an upper limit to M is the smallest num¬ 

ber in the second column corresponding to a number greater than or 

equal to~T in the fourth column. If T is greater than all the numbers 

in the fourth column (but of course less than the accumulated total of 

the entire array), then it is easily seen that M is the largest nuftber 

in the second column. 

Let us examine Table k from this point of view. We shall consider 

two cases: (i) T = 6l0 (10$ of the accumulated total of the array) 
and (ii) T = '440 of the accumulated total). In case (i) the 

fifth column of the table provides no lover limit to the value of M, 

but the fourth column indicates I63 as an upper limit. Thus we know 

that M is a number between 1 and 163. In case (ii) we infer that M 

is less than 163 but not less than 137- 

2. Determination of the Maximum Modular Number under Criterion I. 

In order to arrive at a systematic procedure for obtaining the 

exact value of M, it is convenient to consider the effect on the sum 

of remainders R of changing the divisor D to a smaller value D - c. 

Then we have 

N = qD + r. 

By simple algebra we obtain 

N=q(D-o)+r+qc. 

Thus the remainder is increased from r to r + qc provided 

r + qc < D - c, 

that is, provided 

(1) < 
D - r 

q + I' 

12 



Thus if c can be chosen sufficiently small so that the inequality 

(l) is satisfied for all numbers in the array greater than or equal to 

D then all the corresponding remainders are increased. If c is also 

chosen so that no number in the array is betveen D - c and D (or equal 

to D - c), then the remainders corresponding to numbers less than D 

are the numbers themselves, and therefore remain unchanged. Thus R is 

increased. 

We therefore take as the first trial divisor D the upper limit to 

M determined from the fourth column of the table. We then determine 

the smallest positive integer e such that the inequality (l) is not 

satisfied for some number in the array. As the second trial divisor 

we take D - c or the next smaller number preceding D in the array, 

whichever is the larger. It is not necessary to try the numbers in 

between, because the above argument shows that they will produce 

larger values of R than D itself. 

If the second trial divisor is not a modular number, it is taken 

as D and the process is repeated until a modular number is reached. 

The first modular number so obtained is M. 

It is couvenient to discuss first case (ii), in which T = 2^40. 
The calculations are shown in Table 5* T^e first trial divisor is I63, 
the upper limit to M previously determined. Note that the numbers of 

the array less than I63 do not need to be included in the table • By 

actual division we obtain the values of q and r. c is then the smallest 

integer that is larger than the smallest value of (D - r)/(q + l). It 

is usually possible to determine by inspection which q and r give this 

smallest value. If all q's are equal, as is the case here, it will be 

the largest r. If different values of q occur, it may be necessary to 

examine several cases to see which remainder 'goes over the top first. 

In this case it is found that D - c = 115. However, this is less 
than 137, which is the next smaller number preceding I63 in the array. 

But I37 is already known to be a modular number, since the maximum R, 

as shown in the final column of Table 4, is less than 2kb0. Therefore 

M = 137. 

Turning now to case (i), the upper limit is again I63, and by the 

same reasoning as in case (ii) we conclude that the second trial divisor 

is I37. In this case, however, we do not know in advance whether 137 is 
a modular number, and the q's and r's must be computed. 'These are shown 

in the third and fourth columns of Table 6. Accumulation of the products 

of the remainders and the corresponding frequencies gives R = IO32, as 

shown in the table. As this exceeds T = 6IO, 137 is not a modular num¬ 
ber and it is necessary to try further divisors. 

13 



The smallest Integer that Is larger than (137 - r)/(q + l) for 

any q. and r is 22, and the next trial divisor is 137 " 22 = 115- 
Computation from the remainders shown in Table 6 for D = 115 gives 

R = 1731 -- even larger than before. 

The formula would give 92 as the next trial divisor, but since 

the next smaller number in the array is 106, this takes precedence. 

The resulting value of R is 15^3^ which is still too large. By the 

formula the next, trial divisor would be 92 (as before), but at this 
point we can take a short cut and eliminate three trial divisors. 

To see how this is done look at Table 1, which shows, for D = IO6, 

the individual contributions to R of the different numbers in the array. 

We note that the contribution of the number 137 alone exceeds the limit 

of 6IO. Thus, there is no possibility of R getting below this value 

unless the remainder for 137 is reduced. Thus the formula for c can be 

applied to this q and r alone, ignoring the other numbers of the array. 

■This gives c = 38, and the next trial divisor is IO6 - 38 = 68. As seen 

in Table 6, the resi'luing value of R is 661, which is still slightly 

too large. 

Application of the formula now gives c = 7, and the next trial 

divisor is 68 - 7 = 6l, which gives R = 855, as shown. Now, looking 

at Table 7, we see that, for D = 6l, the first three contributions 
together exceed 61O, so that at least one of the first three remainders 
must be reduced in order to get below this limit. Thus we can apply 

the rule to the q’s and r's for the first three numbers alone, ignoring 

the rest of the array. This gives c = 7> and tne next trial di/isor is 

54, which gives R = 1133- 

At this point, without actually exhibiting all the individual contri¬ 

butions to R, we see that the contri out ion of the number 137 Is 25 X 29 

= 725, which alone is greater than 6IO. Thus we can, as before, apply 

the formula to this q and r alone, which gives c = 9, and the next trial 
divisor is 4-5. Since this gives R = 296, we see that 45 is the maximum 

modular number. 

3. Prel-lTn-inary Analysis under Criterion II. 

If Criterion II is adopted, a slightly different type of preliminary 

anal vs is is appropriate. This is given in Table 8. It will be noted 

that" the third and fifth columns of Table 4 do not appear in Table 8; 

l4 



TABLE 5 

DETEFMINATION OF MAXIMUM MODULAR NUMBER FOR T 

D = 163 
Number ¿ r 

163 1 0 

I83 1 20 

I85 1 22 

231 1 68 

R = 41^5 

D - r 
c is smallest integer greater than ^ + -j- 

vhich is 48. D - c = HJ. M = 137* 

Frequency 

1 

1 

= 2440. 

163 - 68 
2 

15 
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■IMLE T 

TTTOD/IDUAL CONTRIBUTIONS TO R FOR 
' pif.?f;TRD TRIAL DIVISORS 

Frequency 

5 

25 

5 

? 

1 

1 

Number 

IOd 

137 

163 

183 

185 

231 

D = IO6 

0 

775 

285 

385 

79 

19 

total 15^3 

D = 6l 

225 

375 

205 

0 

2 

48 

855 

17 



however, three new columns have "been added. It is advisable for the 

present purpose to compute the sum of the quotients (denoted by Q) and 

the sum of the remainders when each number in the second column is 

taken as divisor. Further, the sum of remainders is subdivided to show 

(a) the contribution by numbers less than the divisor and (b) the contri¬ 

bution by numbers greater than the divisor. (Thera is, of course, no 

contribution by the divisor itself.) These separate contributions will 

be denoted by and Eg, respectively, and R = + Rg. For completeness 

we have added the bottom line showing what happens if a divisor greater 

then any of the numbers in the set is used. It is convenient to take 

this divisor as 1 more than the largest number otherwise present' in the 
second column. 

As regards the computation of the figures in the table we note that 

R^ is the seme as ''Minimum R" in Table After Q has been computed, we 

have Rg = S - QD - R^. 

It is easily seen that R^ has the same kind of behavior as Q, but in 

the opposite direcu^n. Thus, if R1 has a certain vcT.us for a given 

divisor D, then for any smaller D its value must be the same or less -- 

never greater. Therefore, the fluctuations in R are confined to Rp. 

(This is not apparent from Table 8, as it does not show the results when 

numbers other than those in the second column are taken as divisors.) 

Determination of the Optimum Modular Number under Criterion II. 

As a first step we note the smallest value of Q + R (last column) 

shown in the table. We know that Q + R can be made at least as small as 

this value, and it is not necessary to consider any trial divisors that 

can be shown to produce larger values. Now we look at the R column to 

see if it contains any values greater than the smallest value of Q + R. 

If so, we note the smallest such value, and the corresponding number in 

the second column is an upper bound to the modular number, since any 

divisor larger than this number must necessarily give a value of Q + R 

larger than the smallest value shown in the table. This upper bound is 

taken as the starting point for obtaining further trial divisors. 

It will be noted that, for the bottom number in the second column, 

both Q and Rg are necessarily zero, and therefore Q + R = R^. Fran the 

monotonie behavior of R^ it follows that failure to find a value of FL 

l8 



TA.3LE 8 

PRELMIMKY ANALYSIS FOR FINDING MODULAR NUMBER, CRITERION II 

Frequency Number 

5 

25 

5 

Cs 
y 

1 

1 

0 

106 

137 

163 

183 

185 

231 

232 

_s_ 

^3 

37 

12 

7 

2 

1 

0 

I 

0 

530 

3955 

4770 

5685 

5870 

6101 

1543 

502 

190 

50 

46 

0 

0 

Q 4* R 

1586 

1069 

4157 

4827 

5733 

5871 

6101 

19 



greater than the smallest value of Q + R can occur only vhen the last 

value of Q + F. is also the smallest. In such a case, the largest num¬ 

ber actually in the set (the second from the bottom in the second col¬ 
umn) may be taken as the starting point for trial divisors. 

In Table 8 the smallest value of Q + R is 1009, and the smallest 
value of R, which exceeds IO69 is 3955, corresponding to the number I63 
in the second column. Therefore the determination of trial divisors 

starts with I63. 

On the other hand, if the table shows a value of Q greater than the 

smallest value of Q + R shown, the number in the second column correspond¬ 

ing to this value of Q is a lower bound to the modular number. No trial 

divisors less than this lower bound need be considered. In the example 

illustrated in Table 8, no such lower bound is obtained at this stage. 

In order to find successive trial divisors we can proceed in exactly 

the same manner as under Criterion I (making use of formula (l)), since 

decreasing the trial divisor cannot decrease Q, and any reduction in the 

value of Q + R mupt result from a decrease in R. The only difference 

in the computations is that Q, as well as R, must ^ computed for each 

trial divisor. As soon as a trial divisor is reached for which the value 

of Q exceeds the value of Q + R for some previous divisor, the computa¬ 

tions can be terminated, since any smaller divisor would produce a value 

of Q + R at least as large as this value of Q. The divisor, out of nl 1 

those tried, which yields the smallest Q + R is the optimum modular num¬ 
ber. 

In the numerical example illustrated in Table 8, the confutations 
parallel closely those for case (i) under Criterion I. Table 9 summarizes 

the results obtained for the successive trial divisors. Since there is no 
preassigned tolerance T, the yardstick to be applied in deciding whether 

certain trial divisors can be skipped is the smallest value of R previously 

obtained. Consider, for example, the situation just after the computations 

for D = 40 have been made. Table 10 shows the individual contributions to 

R by the different numbers in the array. The smallest previous value of R 

is 296 (for D = 4-5), and it is unnecessary to consider any trial divisor 
which is known in advance to produce a larger value of R. Now, it is ap¬ 

parent from Table 10 that the contribution of the number 137 alone exceeds 

296. Thus the formula for c can be applied to this q and r only. This 

gives c = 6, and the next trial divisor is 4o - 6 = 34. 

As indicated in Table 9; the computations are terminated with D = I3, 
since Q then becomes larger than the smallest value of Q + R obtained. 

20 



TABLE 9 

SUMMAiîY OF COMPUTATIONS UNDER CRITERION II 

Trial 
Divisor Q 

163 12 
137 37 
II5 38 
lOb 43 

68 80 
6l 86 

R Q + R 

4145 4157 
1032 1069 

1731 1769 
1543 1586 

661 741 
855 94l 

54 
45 
4o 

34 
33 
?2 

92 1133 1225 
129 296 425 
134 741 «75 
171 287 458 

172 425 597 
177 437 6l4 

27 214 323 
26 225 251 
25 226 451 
22 263 315 
21 2Ó9 452 
19 306 287 

537 
476 

677 
578 
721 

593 

18 317 395 
17 348 185 
16 360 341 
15 397 146 
14 409 375 
13 451 238 

712 

533 
701 

543 
784 
689 
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TABLE 10 

mpxvipm CONTRIBUTIONS TO F FOR D = 

Frequency 

5 

25 

5 

5 

1 

1 

Number q, 

106 2 

137 3 

163 4 

183 4 

185 4 

231 5 

Contributions 
y to R _ 

26 ISO 

IT 425 

3 15 

23 115 

25 25 

31 31 

TOTAL 741 

22 



Any smaller trial, divisors would necessarily yield values of Q + R in 

excess of this smallest value. Therefore the optimum, modular number 

under Criterion II is 45, which gives Q + R = 4-25. 

GENERALIZATION OF THE PROBLEM: 

Under Criterion I, a generalized version of this problem has been 

suggested, in which ihe set of numbers is divided into a number of 

subsets, and the additional condition is imposed that the sum of the 

remainders within each subset is lest than a designated number. This 

more general problem can be solved by successive applications of the 

procedure described above. 

Suppose there are n subsets, numbered sequentially from 1 to n, and, 

in order to simplify- the mathematical description of the problem, let us 

consider the overall set as the (n + l)th set. For the i-th set let T 

denote the limit which the sum of the remainders must not exceed. For 

each set considered, separately we deteimine by the procedure described 

the maximum modular number M 
li- 

Let M denote the smallest of these n + 1 numbers. In many cases 

M' will be a modular number for all the sets. In any case, test it to 

see if it satisfies all the conditions. If M' is not a modular number 

for some set, determine the next smaller number which is a modular num¬ 

ber for that set. Call this M", and test it against the remaining sets. 

% continuing this process a number will eventually be reached which is 

the maximum modular number for all tlie n + 1 sets. Such a number must 

exist, since 1 is a modular number for m 1 sets. 

23 



CONCLUSION 

If a high-speed computer were available, it would probably be 

more advantageous (as suggested in the QM Board report previsouly 

cited) to determine the modular number by trying all divisors, rather 

than to use the more complex procedures described in this report. The 

vise of the "brute force" technique would greatly simplify the program¬ 

ming, and probably would increase computer time only marginally. Hie 

methods presented here would, however, be useful in situations where 

a deteiminatlon must be made manually, or with a desk calculator. 

Even with a computer, techniques described herein might well be used 

to establish an upper and a lower bound, between which all possible 

divisors would be tested. 
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QUARTERMASTER BOARD 
UNITED STATES ARMY 

FORT LEE. VIRGINIA 

IN REPLY 

REFER TO: QMB 
9 March 1960 

SUBJECT: Procedure for Obtaining the Maximum Modular 

Number for a Frequency Array 

TO: The Quartermaster General 

Department of the Army 

Washington 25, D. C. 
ATTN: Dr. T. N. E. Greville 

Operational Math Branch 

BdcE Division 

1. This correspondence is in reference to informal letter of 

5 February 60 from Dr. T. N. E. Greville to Mr. John Goodman of 

the Quartermaster Board conveying an inclosure, Procedure for 

Obtaining the Maximum Modular Number for a Frequency Array. 

2. Mr. Goodman reports that this material has been of con¬ 

siderable value in promoting a combat development study, Packaging 
and Containerization. The Board wishes to take this opportunity to 

expr SS officially its appreciation for this and other contributions 

to its work that have been made, both formally and informally, by 

the Operational Mathematics Branch. 

HERBERT H. RASCHE 

Colonel, QMC 
Acting President 
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